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1 Introduction

A structure responds to external loads (or moments) imposed
~on it with changes in quantities, such as stresses and strains, dis-
~ placements, kinematic deformations, etc. This paper addresses the
problem of indirect measurement of time varying loads acting on
2 component. In the indirect approach, instead of measuring the
posed forces directly, one measures some other quantity, such
strains, displacements, etc., that can be measured easily, and
=zn looks for a linear relationship between the measured quantity
- and the applied loads. The relationship, i.e., the transfer funcrion
between the applied loads and the measured quantity, can be
established numerically (e.g., using finite elements), mathemati-
cally, or experimentally.
Kinematic response measurements using displacement trans-
ducers and accelerometers are well established and well docu-
mented [1]. An aliernative approach involves measurement of
strains using strain ganges [2]. The need to measure strains (or
_ stresses) to other physical quantities is apparent since these are the
altimate concern of a designer interested in ensuring structural
_safety. Further, since the gauges are relatively cheap, the use of
strain gauges to measure dynamic forces acting on a structure has
‘become quite popular in structural dynamics testing [2-6]. In these
~works, both the normal displacement modes and the strain modes
are used to describe dynamic characteristics of the structure.
- While the concept of modal strain was used in the mid-1980s to
- describe dynamic behavior of a structure, it was not until 1989
- when Bernasconi and Ewins [3] presented a sound theoretical ba-
sis of modal stress/strain fields. The relationship between strain
frequency response function and displacement frequency response
function has also been explored by several authors [4-6]. While
both the strain and displacement modes are intrinsic dynamic
characteristics of a structure and correspond to each other, it has
‘teen noted in [6] that for sensitivity reasons, strain modal analysis

'Corresponding author.

lf_'lm'ently President, Wolf Star Technologies, 3321 N. Newhall St., Milwaukee,
- ®T53211, e-mail: im.hunter@wolfstartech.com.

Contributed by the Design Engineering Division of ASME for publication in the
“URNAL OF VIBRATION AND AcOUSTICS. Manuscript received March 5, 2012; final

nanuscript received April 26, 2013; published online June 12, 2013, Assec. Editer-

Journal of Vibration and Acoustics

Copyright © 2013 by ASME

Load Recovery in Components
Based on Dynamic Strain
Measurements

This paper presents a modeling approach for estimating time *.'rarying loads acting on a
component from experimental strain measurements. The strain response of an elast{c
vibrating system is written as a linear superposition of strain modes.-Smce the strain
modes, as well as the normal displacement modes, are intrinsic dynamic charactensl_lcs
of a component, the dynamic loads exciting a component are estimated by measuring
induced strain fields. The accuracy of the estimated loads depends on a nu:mber of fac-
tors, such as the placement locations and orientations of the gauges on the z_nstrumen{ed
structure, as well as the number of retained modes from strain modal analysis. A solm:pn
procedure based on the construction of D-optimal designs is implemenzed'm de.r_ermme
the optimum locations and orientations of strain gauges such that rh? variance in load
estimates is minimized. A numerical as well as an experimental validation of the pro-
posed approach through two example problems (s also presemnted.

[DOI: 10.1115/1.4024384]

Keywords: load recovery, force transducer, D-optimum design, gauge placement

is more useful in dynamic design of structures with features such
as holes, grooves and cracks.

To illustrate the use of strain gauges for recovery of dynamic
loads, many of the works mentioned above considered a simply
supported cantilevered beam on which gauges were located in an
ad hoc manner. While the gauge location on a straight cantilev-
ered beam may be intuitive under certain loading conditions, the
same cannot be said of a complex structure where a trial-and-error
approach to gauge placement can result in poor load estimates.
This is because the gauge may be placed at a location where it has
a relatively low sensitivity to the load(s) to be estimated. Further,
for multidegree of freedom force gauges, the cross-sensitivity [7]
between the gauges may not be small. As a result, the strain data
obtained from many of the gauges may be of little use, and the
load estimates may not be precisely known.

For static loads, the influence of gauge locations and orienta-
tions on the quality of load estimates is discussed in [8]. However,
in this work, it was noted that an analysis of all possible combina-
tions of gauge placements would be too time-consuming for most
problems. Consequently, only a few ad hoc groups of gauges were
selected for analysis. If all possible gauge locations and orienta-
tions are not analyzed, the results are not guaranteed to be opti-
mal, which in turn, may not yield the best possible load estimates.

To overcome this difficulty, Wickham et al. [9] cast the gauge
location problem as an optimization problem wherein the determi-
nation of optimum values for gauge locations and orientations
was done for a C-spring. However, the proposed technique was
demonstrated for recovery of static and quasi-static loads, and
needs to be generalized to handle complex 3-D structures, which
have vibration inducing loads imposed on them. Recently, a
genetic algorithm based approach for mounting strain gauges on
turbine blades to capture vibration modes has also been presented
[10,11]. However, this approach is limited to the recovery of
mode shapes, and not the loads acting on a component.

To overcome the shortcomings mentioned above, this paper
outlines an approach for formulating and solving the gauge place-
ment problem when the imposed loads being estimated induce
vibrations in the structure, resulting in time varying dynamic
strains. The accuracy of load estimates is dependent on the place-
ment (location and orientation) of the strain gauses, and the num-
ber of strain modes retained in the analysis. A sequential
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exchange algorithm based approach [12.13] is used ta select the
optimum locations, and angular orientations of the strain gauges.
Two examples, one dealing with an experimental validation of
proposed procedures and the other dealing with a numerical vali-
dation of the proposed approach, are presented.

2 Mathematical Foundations

Consider first the problem of estimating k quasi-static loads act-
ing on a component by using m (m 2 k) strain gauges mounted on
the component surface. If the deformations are small enough so
that the superposition principle holds, then the strain at any loca-
tion on the component is written as

g=AF : ¢Y)

Here ¢ is an m x I vector of strains, A is an m x k matrix of sensi-
tivity coefficients, and F is a k x I vector of loads. Assuming that
the sensitivity matrix A is known and the strain values & are meas-
ured, the unknown load vector (F) can then be estimated as [8]

F=(aTA)'ATe @

Here F denotes a least-squares estimate of unknown load F. If the
errors in strain measurements are statistically independent and the
standard deviation of each one is ¢, then the covariance matrix for
load estimates is [8]

var F = c>(ATA) " ©)

The smaller the variance of the load estimates, the better the
precision with which the loads are estimated. Therefore, the uncer-
tainty in load estimates can be minimized by ensuring that the ma-
trix (A7 A) ! is well behaved. It is well known that maximizing the
determinant of AT A yields the best possible estimates for the load
vector (F) [12-14]. Such designs are called D-optimal.

Considered next is the problem when the imposed load F(7) is
time varying and induce vibrations in the component. The equa-
tions of motion (EOM) for an n-DOF vibrating system are given as

[M){z} + [K]{x} = {F(1)} @
where x(f) is a n x 1 vector. The free vibration response of this

system can be written as a linear combination of the normal
modes as follows:

=} =iq.-(r>¢f — [©l{g()} )

Here g; (1) is the mode participation factor (MPF) for mode ¢; Defin-
ing the n x n modal matrix for free vibrations as [®] = [¢y, ..., .],

the decoupled EOM for the ith MPF can be written as
§i + wigi = (®'F); ©)
Likewise, for a damped system with input force F(¢), the EOM are
[M]{z} + [Cl{z} + [K}{x} = {F(0)} = {Fe™} M

For a harmonic response, x(#) = Xe'® one gets
[X] = [K — Ma? + iCa] ' [F]

= [(@)]IF] ®
It may be noted that (@) as defined in Eq. (8) is called the dis-

placement frequency response function (DFRF) or the receptance
matrix. In terms of modal coordinates, the EOM are given as
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)[®][G()] + [Cl[®][g()] + K][®@)[a(n)] = £ (@) (&)

For a structural continuum, the strains and displacements {x(f)}

at any point in a structure are related as

{g} = D{x} 10y

where D is a differential operator. Application of the differential

operator to the physical response {x(1)] expressed as a linear

superposition of the modes (Eq. (5)) at a particular instant of time
gives

D({x(n)}) = D([@D{a(D} (11

which leads to

{e()} = [¥Ha(} (12)
Here [¥7] is called the modal strain matrix and contains the strain
modes of the structure. Equation (12) states that for a particular
time, the strain response can be expressed as a linear combination
of the modal strains. The modal strains are an intrinsic property of
structure’s dynamic behavior, as are the displacement mode
shapes.

Assuming that [¥¥] is known and {&()} is measured, the least
squares estimate of the MPF {g(1)} is given as

fa@} = (e 12T L) (13)

Once the MPF {g(z)} are calculated using Eq. (13), the response
{x(2)} is known (Eq. (5)) and the imposed forces can be estimated
using Egs. (4) or (7). ‘

Presented next is an outline of the solution approach that will
allow for the estimation of time varying loads {F(¢)} acting on the
component by measuring strains at a finite number of locations.
The gauge orientations and locations will be optimized such that
the loads estimates are as precise as possible. These locations and-
orientations are determined using a sequential exchange algorithm
[13] first proposed in the context of optimal design of experiments.

3 Gauge Placement Problem

In the context of gauge placement, to achieve the best estimates
for the loads F(r), D-optimal designs help determine (i) where on
the surface of the structure should gauges be mounted, (if) at what
angle should these gauges be mounted, and finally (iii) how many
gauges should be used. To determine D-optimal designs from a
set of candidate gauge locations and orientations, it is essential
that the sensitivity matrix A (see Eq. (1)) be established first.

The steps involved in generating the sensitivity matrix A are as
follows. First, a finite element (FE) model of the component to be
instrumented is created. Sinece the strain gauges will be mounted
on the component’s surface, the elements used for FE modeling
should allow for availability of surface strain information at locations
where gauges could be mounted. From a practical standpoint and to
avoid errors due to strain approximations, the FE meshing should be
done such that the element size is compatible with the physical
dimensions of the strain gauge that will be located on the surface.

Next, a unit load is applied to the component corresponding to
each load to be estimated. The resulting strain field from each of
the load conditions is computed, in local (element frame of refer-
ence) and global coordinate systems at all candidate locations.
The finite element analysis results are used, along with strain
transformation relations, to generate the strain response at each
element, for each possible of strain gauge angular orientation
6,0 <0 <180.

Since the gauge sensitivity varies as the gauge orientation
changes, the strain tensor is transformed to determine strain values
for different gauge orientations as follows [15}:
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ey = [Tllel,,. 71 (14)

Here T denotes the transformation matrix and contains the direc-

* tion cosines for the x'y'z’ system relative to the xyz coordinate sys-

tem. For the shell elements used herein to prepare the FE model,
the element z-axis is always normal to the element. Therefore, the

" strain transformations involve rotation about the z-axis with the
- transformation matrix T given as

cosf sinf O
[fi=|—sinf cosé 0O (15)
0 Gyl

By varying 8, the strain tensor at intermediate gauge orientations
can be obtained.

Each combination of strain gauge location and angular orienta-
tion is a candidate point for inclusion in the A matrix. The terms
in each row of the A matrix represent the response of a strain
gauge, at a particular location and angular orientation, to each
individual load. From this set of candidate gauge locations and
orientations, a subset of m gauges is selected randomly. Given this
m-gauge design, each candidate gauge location (y) currently not
selected is adjoined to the A matrix. The determinant of the
adjoined matrix (M) with m + I gauges is given as [12]

detM™ = detM = (1=yTM™1y) (16)

The row leading to largest increase in det M is retained and the
inverse of M™ is updated as [12]

My =M ()M (2 MTy) ()

In Eq. (16), = should be replaced by plus when a gauge is being
added, and by minus when a gauge is being deleted. A similar
argument applies to the F term in Eq. (17). From the m -+ 1 gauge
design, a gauge is deleted which results in the smallest reduction
in det M This process of adding and removing most and least sen-
sitive gauges continues until det M cannot be improved further. In
this work, the sequential exchange procedure [13] outlined above
along with computational improvements proposed by Galil and
Keifer [12] are implemented. A computer implementation of these
algorithms was done in a MATLAB® programming environment.
Once the gauge locations and orientations are determined on
the surface of the component, the next step involves transforming
the gauge-orientation information from the local space (element
coordinate system) to the global x-y-z space. The global gauge ori-
entation is negeded in order to physically lay the gauge on the
actual component. In order to accomplish this objective, the invar-
iance of local and global principal strains is utilized. Since princi-
pal strains at any point on the component are invariant with
respect to coordinate transformations, an eigenvalue problem is
solved to determine the relationship between local and global
gauge orientation direction cosine vectors. This, in turn, will yield

- the global direction cosine vector for the gauge orientation.

Let & and &g, respectively, denote the local and global strain
tensors at an element. The principal strains (for strain tensor H)
are obtained by solving the eigenvalue problem,

Hx=Ax

X Hx=x"x i

Here A denotes the eigenvalues or principal strains and x denotes
the eigenvectors or the principal directions. If the eigenvectors are
normalized such that x'x = 1, then writing the above eigenvalue
problem for local and global strain tensors yields

VEELVL = ;LL

19)
ViegVe = g :
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Due to invariance of the principal strains, 41, = Ag, giving
T _ T
VL ELVL = VGE(;V(; 20

Premultiplying the above equation by V; and postmultiplying by
VL yields

VngsLVLVé = &G (21)
Letting Ty, = VV] results in
te = TateTy, (22)

Thus the transformation matrix T, can be used to transform ten-
sors as well as vectors between the local and the global coordinate
systems.

If the optimum gauge orientation in the element space corre-
sponds to a gauge orientation angle # with respect to the element’s
local x-axis, then a unit vector corresponding to gauge orientation
is given as X; = [cos(6), sin(#),0]". The global direction cosine
vector, for the gauge orientation, can now be calculated as

X¢ =TwXL - (23)

This global direction cosine vector information can be imported
back in the FE software so that the gauge locations can be super-
imposed on the FE mesh for ease of visualization (see Fig. 3
below).

Lastly, the issue pertaining to the number of required strain
gauges is addressed. It may be noted that when attempting to esti-
mate % loads (or MPF), the number of gauges (m) used must sat-
isfy the relation m > k.

If £,; denotes the strain reading from gauge i (experimentally
measured value) and g,; denotes the predicted strain for gauge i
with {e,} = [A]{f7}, then the estimation error for gauge i is given
as e; = &, — &p; and for an overconstrained system of linear equa-
tions with n — m degrees of freedom, the variance of strain mea-
surement errors is given as [16]

bl )

m
0_2=1‘=I

m—k

(24)

4 Solution Procedure

Summarized next are the steps involved in the recovery of dynamic
loads acting on a component which has a finite number of strain
gauges located on the component to measure time varying strains.

i. Construct a finite element model of the component and per-
form its modal analysis to determine component’s natural
frequencies and mode shapes.

ii. Next, decide how many normal modes will be retained to
approximate the structural response. Let r denote the num-
ber of kept modes. The fraction of modal mass captured by
r kept modes can be used to adjust r so that structural
response is reasonably approximated using 7 modes.

iii. Determine the strain field corresponding to each retained
normal mode of the component. These yield the strain
modes ['¥°] of the structure.

iv. Use the strain field information from step (iii) to determine
optimum gauge locations and orientations. The number of
gauges employed (m) should be greater than or equal to r.

v. Next, given the experimental strain field from a component
on which the gauges are mounted as outlined in step (iv),
the load recovery step (Egq. (13)) yields the participation
factor of each strain mode in the overall strain response.

vi. With the MPF known, the displacement {x(f)} is approxi-
mated using Eq. (5) and eventually the imposed force F(#)
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Fig.1 Flow chart of the overall solution process

can be recovered using the DFRF. Alternately, the displace-
ment {x(f)} can be used in conjunction with Eq. (7) to
recover F(1). )
A complete flow chart of the solution approach is given in
Fig. 1.

5 Examples

Presented next are two examples, one numerical and one exper-
imental, which illustrate the applicability of the proposed proce-
dure for load recovery in cantilevered beams. The first example

I-DEAS Visualizer
Mode Shape 1 Freguency<Hz> = 4.998104

.

I-DEAS Visualizer
Mode Shape 3 Freguency<Hz> = 18.54098

Sedpriel Siags THIReTLIN

Fig.3 Optimum gauge locations and orientations

deals with the recovery of three arbitrary loads acting on a bent
cantilevered beam. The second example deals with experimental
validation of proposed procedures on a cantilevered beam subject
to a base excitation.

5.1 Example 1. Consider the bent cantilevered beam shown
in Fig. 2 with an elliptical hole in the center. This beam was mod-
eled in I-DEAS® software and the first four natural frequencies
and mode shapes were computed. The mode shapes are

I-DEAS Visualizer
Mode Shape 2 Freguency<Hz> = 10.77365

I-DEAS Visualizer
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Fig.2 Bentbeam wilh iis four modes
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Table1 Beam with a 28 Hz base excitation

23 Hz dwell Experimental MPF Theoretical MPF
Mode MPF Particip. % MPF Particip. %
1 187 %1072 949 116 x 107" 9998

2 ~5.63 x 107* 2.8 1.62 x 1072 0.01

3 —328 x 107* 1.7 —2.42 x 107% 0.00

4 477x107% 00 —5.00 x 107 0.00

5 978 x 1073 0.5 1.14 x 107° 0.00

AF

Fig.6 Cantilevered beam with optimum gauge placement

Fig.7 Clamped cantilevered beam mounted on the shaker

normalized to yield a unit-mass matrix. The four mode shapes are.
shown in Fig. 2. It was seen that four modes are sufficient to cap-
ture the overall response of this continuous system. For this exam-
ple with four retained normal modes, at least four gauges are
needed to recover the external loads acting on the beam. Since the
required number of gauges is greater than the numbers of retained
modes, a total of six gauges (number selected arbitrarily) are used.
The optimum gauge locations and orientations for a 6-gauge
design chosen here are given in Fig. 3. It may be noted that the
local to global transformation of optimum gauge orientations was
done using Eq. (23) before the gauge orientations are superim-
posed on Fig. 3. :
Next, three time varying loads (see Fig. 4) are applied to the
upper right-hand corner of the cantilevered beam. The strain field
resulting from the loading in Fig. 4 is input to the load recovery
module and the MPF for all four modes are computed. A time his-
tory of these MPF is given in Fig. 5. A modal analysis of the con-
tent of the three superimposed input signals is also performed
using I-DEAS® to determine the MPF for the input loading. The
recovered and the imposed MPF for all four modes, as a function
of time, are also shown in Fig. 5. Based on the results obtained, it
can be seen that the proposed approach helps recover the modal
content of the imposed loading such that the main contributing
mode is recovered within 5% error. Once the MPF are known, the
response x(r) was reconstructed using Eq. (5), x(r) and X(f) were

| T
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| / = 1[ I
Ll ‘ i
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Fig.8 MPF for a 28 Hz base excitation
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Table2 Beam with a 171 Hz base excitation

171 Hz dwell Experimental MPF Theoretical MPF
Mode MPF Particip. % MPF Particip. %
1 —650x 107* 64  —5.60x107 11.03

2 —$.80 x 107> 87.0 449 x 1072 88.40

3 306 x 101 3.0 —650 x 10712 0.00

4 0 1072 02 4 o10at” 0.00

5 3.25 x 107* 3.0 251 x 107° 0.49

computed by differentiating Eq. (5) with respect to time, and F(z)
was computed by using Eg. (7).

5.2 FExample 2. A 12 in. long, 2 in. wide, and 1/8 in. thick
cantilevered aluminum beam was modeled in I-DEAS® and the
first five normal modes were retained for analysis. Of these five
modes, the third mode is a twist mode, whereas the other four
modes induce lateral vibrations in the beam. A total of eight
gauges (arbitrarily selected number >4) were mounted on the
beam and the optimum gauge locations and orientations are shown
in Fig. 6. The beam was clamped at the base and attached to a
shaker head (see Fig. 7).

Two input base excitations, namely a 28 Hz sine dwell and a
171 Hz sine dwell were input into the shaker head and the fixture
to excite the structure. The strains at each drive input were meas-
ured and analyzed to arrive at the mode participation factors.
Since the 28 Hz excitation is very close to the fundamental fre-
quency of the beam (28.178 Hz), mode 1 dominates the overall
response and overshadows all other modes by close to two orders
of magnitude. This is borne out by the results given in Fig. 8 and
Table 1. Figure 8 gives the MPF for the input 28 Hz loading for
all normal modes, whereas Fig. 9 illustrates the recovered partici-
pation factors for all modes. The scale of the MPF for mode 1 in
Fig. 9 is one order of magnitude higher than those for modes 2--5.
The numerical values in Table 1 are taken at an instant of time,
and give a snapshot of various MPF at the chosen time. It can be
seen from the results in Table 1 that mode 1 dominates all other
modes, and its participation percentage is recovered within 5% of
the theoretical value. It may be noted that since mode shapes are
known up to a constant, the MPF from FEA and from proposed
load recovery procedure cannot be compared directly on 2 one-to-
one basis. To resolve this ambiguity regarding the mode shapes
and MPF, the participation percentages are compared. It is seen
from Table 1 that the participation percentages of all modes are n
good agreement with the theoretical values.

An additional check on the recovery procedure as outlined
herein includes correlating the measured and predicted strains in
various gauges mounted on the beam. Figure 10 shows that the
strain in gauge 1 is reproduced within 0.56% error, whereas for
cauge 3, the strain error is of the order of 5-10 microstrains
(Fig. 11). The error for gauge 3 was within the experiment’s mea-
surement limit of about 10 microstrains.

Next the beam is excited by a 171 Hz sine dwell which is not
too far from the second frequency of 176.34 Hz. For this case,
mode 2 dominates the overall response because the 171 Hz excita-
tion is closer to the second frequency of the beam of 176.35Hz.
The mode participation factors for all modes were computed
and numerical values at a particular instant in time arc given in
Table 2. It was seen that MPF are recovered reasonably accu-
rately. With the MPF known, the response x(r) was reconstructed
using Eq. (5), &(f) and ¥(f) were computed by differentiating
Eq. (5), and F(z) was computed by using Eq. (7).
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6 Conclusions

A computational methodology is presented that allows for indi-
rect measurement of dynamic loads imposed on a component.
This is done by placing strain gauges on the structure such that
best possible load estimates are obtained from the measured strain
information. To improve the precision of load estimates, optimum
design of experiment techniques in conjunction with finite ele-
ment analysis is used to determine values for gauge locations and
orientations. Numerical results on two examples illustrate the
effectiveness of the proposed approach in recovering time varying
loads which induce significant levels of vibrations in the compo-
nent. The examples show that the participation percentage of the
dominant mode is recovered within 5% of the theoretical value.
The MPEs of the first few retained modes were successfully
reconstructed from the system response. The reconstructed strain
in dominant gauge (gauge 1) is with 0.56% of the actual strain. It
was also noted that the strain error in less dominant gauges was of
the order of 5—10 microstrains which was within the experiment’s
measurement limit.

In more complex and real world problems, only a few modes
are available most of the time. This may lead to errors due to
mode truncation. Recovery of large number of MPFs would
require more strain gauges to be used, which may not always be
feasible. Future research will focus on these areas so as to obtain
the highest accuracy with fewer available modes.
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