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Abstract: Aiming at the problems that it was difficult to determine the load boundary conditions
of mechanical structures under complex working conditions, an external load inversion technology was
proposed based on multrinformation fusion of simulation and measurement. Firstly, the finite element
model of the structures to be studied was established, the unit load was applied at the positions of the
external load, and the full field strain response of the member was calculated. Then, the optimal lay-
out scheme of measured points and the optimal load coefficient matrix of strain test were obtained
based on the D-optimal design principle, and the dynamic response relationship between external load
and strain was established. According to the obtained measured point layout scheme, the strain gauges
were pasted on the structure to measure the dynamic strain histories of the machine in the actual
working processes, the dynamic external load histories of the structure was inversed based on the
measured strain histories and the response relationship between load and strain. Taking the working
devices of the hydraulic excavator as an example, the hinge point load of the boom was determined by
the proposed method, the load inversion results were used as the input of boom transient dynamics
analysis, and the simulation values of base measurement points and non-base strain were calculated,
the measured values were compared with the simulated values to prove the effectiveness of the pro-
posed method.

Key words: excavator; D-optimal design; measured point layout; load inversion; finite element
simulation
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Fig.1 Load inversion process
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Fig.2 Finite element model of excavator boom

+ 642 -

.von Mises )
, R, XTY~2Z
von Mises
) 3 o
b
von Mises ,
: D-
(a) x
(b) v
() z
3 R,
Fig.3 Mises equivalent strain results of boom under
load at R,
b
b
o b

1)

True-Load/Pre-Test™"*,

Gg(, ’



. 4, )
D
(a)
5
(b) Fig.5 Multi information synchronous acquisition system
4
Fig.4 Location of strain gauge for boom 6 '
2.2 ) )
2.2.1
2.2.2
(a)
[14] R ,
, WDS2500
s
LMS SCADAS Mobile
o S5 o
D- , 4 ) (o)
6
, Fig.6 Diagram of test site
, 2.2.3
° ’ s
s s s
5 P s
322 Hz,
s 2.2.4
, 7a ,

+ 643 -



33 6 2022 3

10 min,
s 150~200 s( 7a
)
7b
(a)
(b)
7
Fig.7 Cylinder displacement curve of bucket
2.3
(5 ,
A t-
A D -
s & .
4 o
, 1 2
, 8 ) 9
o , (0~7s), 1
2 x v
97 S ’
] H P4
(0~7s), 1 2

b b

+ 644 -

) (11~14 s),

(14 ~17 s),

’

(a)R,

(bR,
8

Fig.8 Inversion of hinge force load
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